
Surviving Client/Server:
Delphi 2.0 Potpourri
by Steve Troxell

Last month we began a look into
the major new database fea-

tures of Delphi 2 by exploring
cached dataset updates in depth.
This month we’ll wrap up our look
at cached updates, continue on
with dataset filtering and conclude
with an overview of the new data
dictionary facility.

Cached Updates Continued
As promised last month, I’m going
to show you how to use TUpdateSQL
to modify a result set containing
columns from multiple tables. I’m
going to pick up where I left off with
the last issue, so if you missed it,
this part will be difficult to under-
stand and you may want to skip to
the next section titled Dataset
Filtering.

If you’ll recall from the last issue,
we can use the TUpdateSQL compo-
nent in conjunction with cached
updates to provide our own SQL
statements for the modification of
the underlying result set for data-
aware controls. The example pro-
gram shown in Figure 1 illustrates
this case. The query shown at the
top normally produces a read-only
result set because it involves a join
between two tables. We are going
to allow editing of all three fields in
the data-aware grid even though
two of them come from the
Employee table and one comes from
the Department table.

Note that this is a highly con-
trived example as it would be
far-fetched to provided a grid such
as this that allows modification of
the name of the department the
employee is assigned to. This was
the best I could come up with
within the limitations of the exam-
ple InterBase database. However, it
does serve to illustrate the point.

For this example, we use two
TUpdateSQL components: one for
the Employee table and one for
the Department table. The SQL

statements used for each compo-
nent’s ModifySQL property are
shown in Listing 1. Note that we
included the Dept_No field in the
result set even though it is not part
of our grid display. This is so we
would have something with which
we can reference the Department
table in the UPDATE statement.

Remember from last month
when we had a single TUpdateSQL
component, we bound it to the
dataset component by assigning it
to the dataset’s UpdateObject prop-
erty. In this case, how can we

assign two TUpdateSQL components
to one UpdateObject property? We
don’t. Instead we attach a handler
to the dataset’s OnUpdateRecord
event and employ the TUpdateSQL
components through code, as
shown in Listing 2.

This event handler is ultimately
called by ApplyUpdates when we
post our cached changes. The han-
dler passes in DataSet, which refers
to the dataset being modified, and
UpdateKind, an indicator of the type
of update (insert, modify, or
delete) being performed.

➤ Figure 1

update Employee
 set First_name = :First_Name,
 Last_Name = :Last_Name
 where Emp_No = :Old_Emp_No
update Department
 set Department = :Department
 where Dept_No = :Old_Dept_No

➤ Listing 1: TUpdateSQL SQL statements

procedure TfrmMain.qryGetEmployeesUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 UpdateSQL1.DataSet := DataSet;
 UpdateSQL1.Apply(UpdateKind);
 UpdateSQL2.DataSet := DataSet;
 UpdateSQL2.Apply(UpdateKind);
 UpdateAction := uaApplied;
end;

➤ Listing 2: OnUpdateRecord handler

September 1996 The Delphi Magazine 23

Normally, when a TUpdateSQL
component is bound to a dataset
through the UpdateObject property,
it is inherently aware of which
dataset it is bound to and executes
the SQL statements through that
dataset component. When used in
the OnUpdateRecord event handler,
no direct association has been
made between the TUpdateSQL com-
ponents and the dataset, so we
must explicitly bind them by
setting the TUpdateSQL.DataSet
property.

Then we call the TUpdateSQL.
Apply method and pass in the type
of update being made so the
component knows which SQL
statement to execute for this par-
ticular update. Finally we set the
return parameter UpdateAction to
uaApplied to indicate that we suc-
cessfully applied the changes.
UpdateAction defaults to uaFail and
the update is aborted unless you
explicitly set this parameter
otherwise.

That’s all there is to it. Since
TUpdateSQL gives you direct control
over the exact SQL statements
being used to modify the result set,
you can incorporate behavior that
the normal Delphi database
handling doesn’t allow.

Dataset Filtering
All TDataSet components now have
a slick new record filtering capabil-
ity which allows you to extract vari-
ous subsets of the result set
returned by a TTable, TQuery or
TStoredProc. You accomplish this
by supplying filtering criteria simi-
lar to an SQL WHERE clause in the
component’s Filter property.
Then, by setting the Filtered prop-
erty to True, the result set is
scanned and those rows failing to
satisfy the filter are made invisible
in the result set. When you set
Filtered back to False, all the origi-
nal records are available again in
the result set.

All this is accomplished inter-
nally without the need to submit
independent queries to the server.
The actual result set remains
intact, but the visibility of certain
rows is affected by filtering. This is
the same concept we saw in last
month’s column when using the

UpdateRecordTypes property to
show classes of record changes
with cached updates.

The program shown in Figure 2
illustrates how this works. This
example shows all employees with
a job code of Eng. The radio buttons
at the bottom allow you to apply a
filter to show the whole set or a
subset of just those engineers
working in the United States. When
USA Only is clicked, the entries for
Willie Stansbury and Yuki Ichida
disappear. The code for the event-
handlers for these buttons is
shown in Listing 3.

The filtering is done at the client
end, operating on the dataset al-
ready returned by the query. Since
the filtering in this case involves
reducing the set of records already
returned by the query, the need to
submit a new query with a more
restrictive WHERE clause is elimi-
nated. The existing result set can
be reduced (and restored) any
number of times and any number
of ways without querying the data-
base again. Obviously there will
still be situations where it will be
more efficient to re-query the data-
base, but in those cases where an
initial set of records is retrieved
from the database and the user is

allowed to reduce that set, then
this technique is more efficient.

Filtering in this manner can in-
clude multiple expressions con-
nected with AND or OR operators,
but cannot include functions like
UPPER(). Keep in mind that while
the syntax is like an SQL WHERE
clause, it is not SQL and you cannot
use SQL functions (or any function
for that matter) within the Filter
property.

OnFilterRecord Event Handler
Alternatively, we could have per-
formed the same filtering by using
the dataset’s OnFilterRecord event
handler instead of the Filter prop-
erty. When Filtered is set to True,
the OnFilterRecord event handler is
called once for each record in the
dataset. You simply provide the
code necessary to identify those
records to be excluded from the
filtered result.

For example, the same filtering
shown in Listing 3 could have been
accomplished by the code which
is shown in Listing 4, where
qryGetEmployeesFilterRecord is the
query’s OnFilterRecord event han-
dler. If the handler’s Accept pa-
rameter is set to True (the default),
then the record is included in the

➤ Figure 2

procedure TForm1.btnWorldwideClick(Sender: TObject);
begin
 qryGetEmployees.Filtered := False; { Deactivates filtering }
end;

procedure TForm1.btnUSAOnlyClick(Sender: TObject);
begin
 with qryGetEmployees do begin
 { Note the use of two single quotes to achieve
 one embedded single quote }
 Filter := ’Job_Country = ’’USA’’’;
 Filtered := True; { Activates filtering }
 end;
end;

➤ Listing 3: Dataset filtering

24 The Delphi Magazine Issue 13

filtered result set. By using the
OnFilterRecord event handler
rather than the Filter property,

you have all the functions and logic
Delphi provides at your disposal in
writing a filter. But beware, this

code is applied to every record
in the dataset, so it should be
streamlined for performance.

Implementing Searches
You can do much more with filter-
ing than just reduce the visible
result set. You can leave the entire
result set visible and employ filter-
ing to move the record pointer
through all the rows matching the
filter. In this manner, you can im-
plement the standard Find and Find
Next operations as illustrated in
Figure 3. In this example, you enter
a particular department number,
and press the Find button. The re-
cord pointer instantly moves to the
first employee in that department,
while all the employees remain vis-
ible. Pressing the Find Next button
moves the record pointer to the
next matching employee, and so
forth.

Listing 5 shows how to accom-
plish this. The OnChange event for
the edit control sets the query’s
Filter property. The Find First
button then calls the query’s
FindFirst or FindLast method
depending on the search direction
chosen by the user. These meth-
ods move the record pointer to the
first (or last) record in the dataset
that meets the filter criteria.
Finally, the query’s Found property
indicates whether the Find...
method actually found anything.
Note that Filtered is not used in
this operation: that would make all
non-matching rows invisible.

Incremental Searches
This same search technique can be
refined to allow incremental
searches. What makes this possi-
ble is the last piece of the filtering
puzzle: the FilterOptions property.
This property comprises a set of
two values, foCaseInsensitive and
foNoPartialCompare, which are both
present by default. By turning
off foNoPartialCompare, partial
matches to the filter criteria can be
performed.

Figure 4 shows an example pro-
gram that incrementally searches
the employee name. The only code
necessary to implement this is
shown in Listing 6. Note that an
asterisk is appended to the end of

➤ Figure 3

procedure TForm1.qryGetEmployeesFilterRecord(DataSet: TDataSet;
 var Accept: Boolean);
begin
 Accept := DataSet[’Job_Country’] = ’USA’;
end;

procedure TForm1.btnWorldwideClick(Sender: TObject);
begin
 qryGetEmployees.Filtered := False;
end;

procedure TForm1.btnUSAOnlyClick(Sender: TObject);
begin
 qryGetEmployees.Filtered := True;
end;

➤ Listing 4: OnFilterRecord event handler

procedure TForm1.edtSearchMaskChange(Sender: TObject);
begin
 with qryGetEmployees do
 if edtSearchMask.Text = ’’ then
 Filter := ’’
 else
 Filter := Format(’Dept_No = ’’%s’’’, [edtSearchMask.Text]);
end;

procedure TForm1.btnFindFirstClick(Sender: TObject);
begin
 with qryGetEmployees do begin
 if btnDown.Checked then
 FindFirst
 else
 FindLast;
 if not Found then
 MessageDlg(’No matches found.’, mtError, [mbOk], 0);
 end;
end;

procedure TForm1.btnFindNextClick(Sender: TObject);
begin
 with qryGetEmployees do begin
 if btnDown.Checked then
 FindNext
 else
 FindPrior;
 if not Found then
 MessageDlg(’No matches found.’, mtError, [mbOk], 0);
 end;
end;

➤ Listing 5: Using filtering for searches

September 1996 The Delphi Magazine 25

the search value. This is a required
wildcard to perform partial
matches (something that the
Delphi documentation neglects to
mention).

Client/Server Considerations
While these filtering techniques
are certainly very helpful, you must
keep in mind that, like most of the
database functionality in Delphi,
they were designed with desktop
databases in mind. You must exer-
cise good judgment in how and
when you implement dataset filter-
ing with client/server databases.

Keep in mind that dataset filtering
is applied on the result set at the
client end. It is still up to you to
retrieve a manageable result set
from the server before dataset
filtering can be applied. An incre-
mental search dialog with dataset
filtering is still a bad idea if you
are simply going to bind an
unrestricted TTable to a million row
customer table.

Using The Data Dictionary
As with version 1, Delphi 2 allows
you to customize the attributes for
any or all of a dataset’s field com-
ponents by using the Fields Editor
and changing field attributes
through the Object Inspector (see
Figure 5). However, with version 2
you can drag and drop the field
from the Fields Editor onto the
form and Delphi automatically pro-
vides a data-aware control and
corresponding label for that field
(and a TDataSource component, if
needed, to link the control and
dataset).

What’s also new is the Data
Dictionary which is used to pre-
define attributes for selected fields
outside of the application so that
the field is consistently presented
throughout a project or across
several projects. Before we discuss
how to create a data dictionary for
your projects, let’s use the exam-
ple one already provided by
Borland to get a feel for what we’ll
use it for.

Delphi 2 ships with an example
data dictionary already in place
called the Borland Database
Engine Sample Data Dictionary.
This is set up for the DBDEMOS exam-
ple database. To see how the Data
Dictionary works, let’s create a
new form in Delphi 2, drop a TTable
component on it, and hook the
TTable to the DBDEMOS alias and the
CUSTOMER.DB table. Next, double-
click on the TTable to pull up its
Fields Editor, right-click the Fields
Editor, and select Add Fields from
the speedmenu to add all the fields
in the table to the Fields Editor.

Now is where the Data Diction-
ary part comes in. Click the CUSTNO
field in the Fields Editor and take a
look at the Object Inspector (see
Figure 5). If you have a sharp eye,
you’ll see that some of the proper-
ties do not have their usual default
values. Specifically, the Display-
Format, MaxValue, MinValue and
Required properties have changed.
This is because these properties
have been assigned specific values
in the Data Dictionary for this
particular field in the database.

Basically, the Data Dictionary
allows you to predefine field com-
ponent default property values for
any field in the database. These
defaults are accessible by any
Delphi project using the database.
You are free to change any or all of
the values in the field component
itself the Data Dictionary simply
provides new default values.

➤ Figure 4

procedure TForm1.edtSearchMaskChange(Sender: TObject);
begin
 with qryGetEmployees do begin
 Filter := Format(’Full_Name = ’’%s*’’’, [edtSearchMask.Text]);
 FindFirst;
 end;
end;

➤ Listing 6: Partial match filtering

➤ Figure 5

➤ Figure 6

26 The Delphi Magazine Issue 13

What you gain by using the Data
Dictionary is that you can define
selected field attributes inde-
pendently of any particular form or
project so that the field definition
can be applied consistently to all
occurrences of that field through-
out all your projects. For example,
you might have special edit masks
for order numbers, customer num-
bers, or credit card numbers. You
can even override the default
TDBEdit control that gets dropped
on the form when dragging the field
from the Fields Editor. Want a
TDBLookupCombo instead? No prob-
lem, it can be assigned in the Data
Dictionary.

Creating A Data Dictionary
So how do you setup a data diction-
ary for your own databases? Start
with SQL Explorer (Database
Explorer for you Delphi Developer
types) by selecting Database |
Explore from the main menu in
Delphi 2. Then select Dictionary |
New from the SQL Explorer main
menu. This takes you to the dialog
shown in Figure 6.

Dictionary Name simply identifies
this dictionary when we have to
select between ours and the
Borland Sample Dictionary, for ex-
ample. Database is the alias for the
database in which we will store the
dictionary information. Note that
this is not necessarily the alias for
the database we are creating the

dictionary for. The Borland Sample
Dictionary applies to the DBDEMOS
database, but Borland chose to
store the dictionary itself in a data-
base called DefaultDD. For our pur-
poses here, we will also store our
dictionary in the DefaultDD data-
base. In practice you could just as
easily store the dictionary within
the same database you’re describ-
ing. It’s important to understand
which database we are referring to
throughout this process.

Table Name is the name of the
table that will be created in
DefaultDD to contain all the infor-
mation for the data dictionary we
are creating. DefaultDD happens to
be a Paradox database, so we have
to be sure our table name is legal
for Paradox and obviously should
not conflict with any existing table
in that database. Description is an
arbitrary text field that further
defines our dictionary.

Now that we’ve created the
dictionary, we’re going to populate
it. The first thing we need to do is
associate a particular database
with the dictionary. From the main
menu select Dictionary | Import
From Database and select the
IBLOCAL alias for the example Inter-
Base database. This is the data-
base for which we’ll be creating the
dictionary. Note that we could add
any number of databases to our
data dictionary.

Now that we have a database, we
need to setup some field defini-
tions. The Data Dictionary refers to
these as Attribute Sets. In the

outline, right-click on Attribute
Sets and select New. Enter
EmployeeNum as the name for the
new attribute set. In the right-hand
pane (see Figure 7) are all the pos-
sible properties for this attribute
set. In our case we know that the
employee number is an integer
value between 1 and 9999 so we set
the MaxValue and MinValue fields as
shown. Note that the TControlClass
property is where we would define
a different data control (such as
TDBLookupCombo) for a field in the
Data Dictionary. When we are done
setting properties, right-click on
our attribute set in the left-pane
(EmployeeNum) and select Apply from
the speedmenu to save what we’ve
done.

The last thing we need to do is
bind the attribute set with one or
more fields in the database. In the
outline, drill-down through
Dictionary | Databases | IBLOCAL
| Tables | EMPLOYEE | Fields |
EMP_NO (see Figure 8). In the right-
hand pane you’ll see the property
Attribute Sets. Pull down the
drop down list and select the
EmployeeNum attribute set to bind it
to this field. Right-click on the
EMP_NO field in the outline and select
Apply from the speedmenu to save
the binding. Now do the same thing
for the EMP_NO field in the
EMPLOYEE_PROJECT table.

If you return to the outline in the
left-hand pane, you’ll now see
these two fields listed under
Attribute Sets | EmployeeNum |
Referencing Fields. You will

➤ Left: Figure 7
➤ Right: Figure 8

September 1996 The Delphi Magazine 27

probably have to select Refresh
from the outline speedmenu first.
Now, whenever you reference this
database in a Delphi project, the
BDE links with the Data Dictionary
to obtain default property values
for any field component you may
define for the EMPLOYEE.EMP_NO field.

If you change the characteristics
of an attribute set defined in the
Data Dictionary, any existing field
components defined in Delphi
projects are not affected in any
way. Only the creation of new field
components for the changed field
will respond to the new values in
the Data Dictionary. However, the
field component retains knowledge
of its link to the Data Dictionary so
you can refresh the component’s
properties by selecting Retrieve
Attributes from the field’s
speedmenu.

Delphi’s Data Dictionary sup-
plies a mechanism for external field
definitions, but does nothing to aid
you in managing changes to the
dictionary by way of identifying or
cascading those changes in af-
fected projects. It is entirely up to
you to manually identify each af-
fected field in all your projects and
decide whether to apply the
changes for each and every field.

Conclusion
With Delphi 2 come some signifi-
cant improvements in database
handling that greatly simplify
many common challenges faced by
database application developers.
However, Delphi still retains a de-
cidedly desktop database flavor.
Client/server developers can cer-
tainly benefit from features like
cached updates and filtering if
used carefully. If used indiscrimi-
nately, these features can
undermine some principal advan-
tages of the client/server model.

Next month we’ll see some tips
and tricks to increase your produc-
tivity and effectiveness with SQL.

Postscript
An issue that I hear from readers
quite frequently is “How can I write
a Delphi program to access any
backend server with minimal
changes?” The question is a legiti-
mate one. It is of great value to have
an application that is portable
across more than one backend
server, particularly when custom-
ers may have already invested
heavily in a particular RDBMS. The
answer is not simple and I have
decided to address the topic in this
column. In fact, the answer is so

un-simple that I need your help in
compiling it.

There are a number of backends
that can be used with Delphi and
my experience is limited to only
InterBase and Microsoft SQL
Server. We have developed a
means to support both of these
servers for our development
needs, but I would like to hear from
others who have tackled the same
issues to get a broader feel for the
problems involved and more
generalized solutions.

If you would like to participate in
this “group-study” then I would like
to hear from you. I would especially
like to hear from anyone who has
created a significant Delphi app
that allows the backend to be
either Paradox or a SQL database.
What obstacles did you face and
how did you solve them? Please
e-mail me at one of the addresses
below.

Steve Troxell is a software engi-
neer with TurboPower Software
where he is developing Delphi
client/server applications for the
casino industry. Steve can be
contacted at stevet@tpower.com
or on CompuServe at 74071,2207

	Cached Updates Continued
	Dataset Filtering
	OnFilterRecord Event Handler
	Implementing Searches
	Incremental Searches
	Client/Server Considerations
	Using The Data Dictionary
	Creating A Data Dictionary
	Conclusion
	Postscript

